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Big Idea #1: Since they conform to empirically observed
properties of financial data and reduce dimension, factor
models are used almost universally to generate inputs to
mean-variance optimization

The return generating process

r = βf + ϵ

implies the expected returns:

E[r] = βE[f ] + E[ϵ]

and covariance matrix:

Σ = βFβ⊤ +∆

Returns or excess returns r are the sum of factor returns f scaled by exposures β and specific returns ϵ, which are pairwise uncorrelated and uncorrelated
with factor returns. Returns are observable but the factor and specific components are not. The factor and (diagonal) specific return matrices are denoted
by F and ∆.
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Big Ideas

The Challenge
Sample covariance matrices are unreliable for portfolio optimization
High dimension (many securities) and finite observations

The Solution: Factor Models

r = βf + ϵ

Σ = βFβ⊤ +∆

Reduces dimensionality while preserving essential structure
Captures systematic risk (βFβ⊤) and idiosyncratic risk (∆)

Extension: RMT
Provides us tools to estimate factor model parameters in high dimension
when data is scarce.
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Spectral decomposition and covariance matrix estimation

Spectral decomposition and covariance matrix estimation
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Spectral decomposition and covariance matrix estimation

Eigenvalues and eigenvectors of noisy sample return
covariance matrices for large cap equities provide the
components of factor-based covariance matrices used in
Markowitz optimization

We identify salient characteristics of sample return covariance matrices, and
provide some answers to these questions:

How many spiked eigenvectors (factors) do we typically see, and how does
that number vary over time.
How do spiked eigenvalues depend on the number of securities in the
estimation universe?
How are the entries of spiked eigenvectors distributed?
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Data and Methodology

Data and Methodology
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Data and Methodology

Data

Our dataset consists of an approximation of the Russell 3000 constituents
based on the BlackRock iShares ETF IWV (Oct 09, 2024)
Using WRDS Center for Research in Security Prices data, we retrieved the
Daily Total Return (DlyRet) and Daily Market Capitalization (DlyCap) from
January of 2003 to December of 2023 for each Ticker obtained from the
above ETF.
Securities without complete history are dropped, we have an effective
maximum of 2340 securities.
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Data and Methodology

Methodology Overview

Covariance Matrix Estimation:
Look-back window of 126 trading days
Sample covariance matrix computed for each window

Spectral Analysis:
Spectral decomposition of sample covariance matrices
Focus on leading eigenvalues and corresponding eigenvectors
Comparison between market-cap sorted and ”randomly” selected stocks

Time Period Analysis:
Eight distinct 126-day periods (2019-2022)
Attention paid to market stress periods (e.g., 2020 pandemic)

Removing Outliers
Remove any stock with a return over 150% or below -100%
See Appendix A for a detailed list
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How many factors?

How many factors?
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How many factors?

How many factors

How many spiked eigenvectors (factors) do we typically see
How does that number vary over time
Eight time periods of 126 days each are chosen (2019 - 2022)
The spectrum of eigenvalues is used to identify the number of factors
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How many factors?

Observation over 8 time periods (Part I)
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How many factors?

Observation over 8 time periods (Part II)
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How many factors?

Observation over 8 time periods

Period Factor Number
2019.1 - 2019.6 3
2019.7 - 2019.12 5
2020.1 - 2020.6 1
2020.7 - 2020.12 3

Period Factor Number
2021.1 - 2021.6 5
2021.7 - 2021.12 2
2022.1 - 2022.6 3
2022.7 - 2022.12 2

In normal cases, the number of outstanding factors is around 4
In a financial crisis, the number of factor concentrates to one
e.g. the pandemic (2020.1 - 2020.6)

Question: Is this (Elbow Method) a good way to count factors? Can we have a
more systematic approach (Biometrika Paper)?
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How do Eigenvalues grow with respect to the number of securities
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How do Eigenvalues grow with respect to the number of securities

The leading eigenvalue shows roughly affine dependence on
the number of securities p

Market cap

Random stocks

Covariance matrix estimated EOY 2021 using trailing 126 days of data. Stocks are sorted by
market capitalization (orange line) or randomly drawn for each p (blue box plots).
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How do Eigenvalues grow with respect to the number of securities

Over 8 time periods (Part I)

Market cap

Random stocks
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How do Eigenvalues grow with respect to the number of securities

Over 8 time periods (Part II)

Market cap

Random stocks
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How do Eigenvalues grow with respect to the number of securities

Fit into a one-factor model

Suppose returns follow a one-factor, homogeneous specific risk model:

r = βf + ϵ

β is a p-vector of exposures
f is the factor return
ϵ is a p-vector of mean 0 specific returns
The population covariance matrix of r is given by:

Σ = σ2ββ⊤ + δ2I

σ and δ are factor and specific volatility and I is the p × p identity matrix
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How do Eigenvalues grow with respect to the number of securities

Fit into a one-factor model

We draw βs from a normal distribution with mean 1 and standard deviation τ

β is the leading eigenvector of Σ and the eigenvalue is given by:

λ2 = σ2|β|2 + δ2 ≈ σ2p(1 + τ2) + δ2

The approximation should improve as p grows
If we fit this to the previous plot of EOY 2021 we’ll have:

σ2(1 + τ2) = Slope ∗ 252 = 0.033

δ2 = Intercept ∗ 252 = 0.403 δ = 0.636

τ can be calculated from the first eigenvector (normalized to mean 1)

τ2 = 0.385 Therefore, σ2 = 0.024 σ = 0.156
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How do Eigenvalues grow with respect to the number of securities

How do σ and δ change over time

Period σ δ
2019.1 - 2019.6 0.134 nan
2019.7 - 2019.12 0.124 0.518
2020.1 - 2020.6 0.499 nan
2020.7 - 2020.12 0.167 0.337
2021.1 - 2021.6 0.166 1.182
2021.7 - 2021.12 0.155 0.636
2022.1 - 2022.6 0.260 nan
2022.7 - 2022.12 0.239 nan

Fitted σs are in a reasonable range and are close to the ones used in reality
Fitted δs are larger than expected (due to the hidden factors)
σ and δ explodes in financial crisis (also true for 2008)
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We need more factors
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We need more factors

A 4-factor model
Let rt be the p-vector of returns at time t, where p are our securities.
Given centered returns Y = R− R̄, we compute sample covariance
S = Y Y ⊤/n

Consider its spectral decomposition

S =
∑
(s2,h)

s2hh⊤ = HH⊤ +N

H is a p× k matrix with columns of form sh from k largest eigenvalues s2

N = S −HH⊤ represents the residual matrix
The PCA covariance matrix is

ΣPCA = HH⊤ +∆

where ∆ = diag(N) sets off-diagonal elements of N to zero
We only center the means of returns and do not standardize variances since:

All variables are in the same unit (daily percentage returns)
Variance differences between stocks contains information we desire
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We need more factors

One vs 4-Factor Residual Correlation Heatmaps
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How are the entries of spiked eigenvectors distributed
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How are the entries of spiked eigenvectors distributed

How are the entries of spiked eigenvectors distributed

Look at how the mean and variance of spiked eigenvectors change over time
(before normalization)
Normalize the fist factor to mean 1
Z-score normalize the rest factors
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How are the entries of spiked eigenvectors distributed

A look at how the mean and variance of spiked
eigenvectors change over time (before normalization)

The first factor has an outstanding mean, while the rest are rather close to 0
The standard deviation of the first factor is lower and responses more to
market changes (e.g. 2020.1 - 2020.6)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part I)

(UC Berkeley) Spectral Properties of Matrices Fall 2024 28 / 38



How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part II)
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How are the entries of spiked eigenvectors distributed

Z-score the second factor (Part I)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part II)
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How are the entries of spiked eigenvectors distributed

Z-score the third factor (Part I)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part II)
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How are the entries of spiked eigenvectors distributed

Z-score the fourth factor (Part I)
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How are the entries of spiked eigenvectors distributed

Normalize the first factor to mean 1 (Part II)

(UC Berkeley) Spectral Properties of Matrices Fall 2024 35 / 38



How are the entries of spiked eigenvectors distributed

Limitations and work in progress

Further interpreting the histograms of eigenvectors
Siamak idea: Instead of only looking at how the mean and variance of spiked
eigenvectors change over time, can we use ML (say random forest) to make
predictions from the histograms? I guess this may entail computing metrics
from the histograms and training the ML alg on a bunch of histogram
metrics. I’m not sure how much people have done this in this context.
Siamak idea: Can we compute kurtosis/peakedness of the presented
histograms? I would think this would be a telling comparative point among
the different cases.
Include or exclude outliers in the dataset
Look at the plots on the same horizontal scales and look at the four factor
panels for one date at a time
And much more to do...
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How are the entries of spiked eigenvectors distributed

Appendix A: List of Removed Outliers

2019.1 - 2019.6
AXSOME THERAPEUTICS INC

2019.7 - 2019.12
CHEMOCENTRYX INC
SYNTHORX INC
KARUNA THERAPEUTICS INC
INTRA CELLULAR THERAPIES INC
NEXTCURE INC

2020.1 - 2020.6
ENABLE MIDSTREAM PARTNERS LP
SORRENTO THERAPEUTICS INC
MACROGENICS INC
ADAPTIMMUNE THERAPEUTICS PLC
M F A FINANCIAL INC
WINS FINANCE HOLDINGS INC

2020.7 - 2020.12
SERES THERAPEUTICS INC
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How are the entries of spiked eigenvectors distributed

List of Removed Outliers (cont.)

2021.1 - 2021.7
A M C ENTERTAINMENT HOLDINGS INC
HISTOGENICS CORP

2021.7 - 2021.12
STATE AUTO FINANCIAL CORP

2022.1 - 2022.7
None

2022.7 - 2022.12
PROMETHEUS BIOSCIENCES INC
MADRIGAL PHARMACEUTICALS INC THERAPEUTICS PLC
PLIANT THERAPEUTICS INC
SUMMIT THERAPEUTICS INC
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